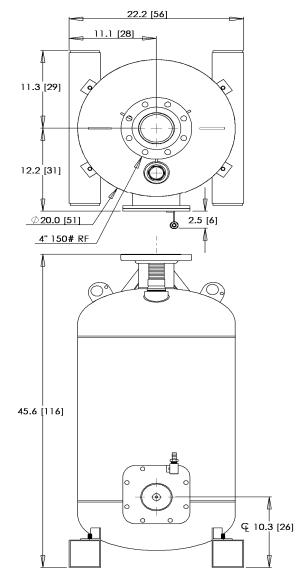


MODEL S4X4C

CLASS: Submersed solids handling

CONSTRUCTION: Carbon Steel


CAPACITY: 0-135 gpm [511 lpm]

DISCHARGE PRESSURE: 0-100 psi [6.9 Bar]

MAX SOLID: 3.75" [9.5 cm]

CONFIGURATION OPTIONS

- ALL-PNEUMATIC CONTROL (XP/explosionproof and remote locations)
- ELECTRO-PNEUMATIC CONTROL (non-XP)
- GRAVITY FILLED
- FLOW INDUCED (vacuum assisted fill)
- HIGH TEMPERATURE (212F/100C)

APPLICATION EXAMPLES

Sumps for: coal handling and belt conveyor sumps, bottom ash and clinker sumps, muds, wood yard and pulp sumps, chemical wastes, machining chips, packing plant waste, poultry offals, XP locations, mill scale, raw sewage.

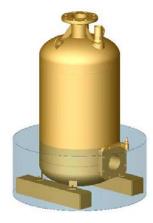
This pump will handle debris ranging from stringy to abrasive up to 3.75" diameter including slurries.

QUICK SPECS

Weight: 370 lbs [168 kg]

• Stroke Volume: 43 gal [163 l]

• Operating Levels: 'Flow Induced' - 15"[38 cm], 'Gravity' - 41" [104 cm] (see reverse side for explanation)


Panel Required: either AP300, EP250 or SP310

See reverse side for Specification Details, Flow Curve and Air Consumption

Gravity operation requires an operating level equal to the top of the pump (appr 41").

No compressed air is required for the fill stroke.

F6 flow inducement uses a compressed air powered, vacuum generator mounted to the exhaust valve of the control panel. It applies vacuum to the pump during the fill stroke to lower the operating level (appr 15").

*see note below chart for additional air consumption

<u>Panel Requirements</u>: Compressed air or dry gas, unlubricated, recommended 80 psi

delivered through 1-1/4" pipe or equal

To specify a pump select a control panel (required) and seat option. Nitrile (std) 15 ft airlines are provided.

Part# **S4X4C/_/_**___

SEAT MATERIAL

N = nitrile (standard) AP300 V = viton EP2500

T = teflon UHD = hard urethane

E = epdm

K = kynar

PANEL OPTIONS

AP300G6 = all-pneumatic, gravity fed EP250G6 = electro-pneumatic, gravity fed

AP300F6L = all-pneumatic, low vacuum flow induced EP250F6L = electro-pneumatic, low vacuum flow induced SP310G6 = electro-pneumatic, single probe, gravity fed

SP310F6 = electro-pneumatic, single probe, high vacuum flow induced

d require 110 vac (<1 A).

Example:

S4X4C/N/SP310F6 = 4X4" steel submersible pump with nitrile seats, SP310F6 control panel.

Valve seat selection:

HEAD meters

- Nitrile good all-purpose elastomer. Medium chemical, oil and solvent resistance, used up to 150°F.
- Viton excellent resistance to oxidizers and solvents. Medium strength, used up to 250°F.
- Teflon excellent chemical resistance to acids, bases and solvents. Lower cycle life, non-elastomeric, used up to 300°F.
- Hard Urethane high durometer with good abrasion resistance with mild chemical resistance, used up to 150°F.

(applies to all panels).

EP250 and SP310 panels also

- EPDM good heat and acid/base resistance but poor hydrocarbon resistance, used up to 300°F.
- PVDF (kynar) excellent chemical resistance, toughness and resistance to cold flow (thermoplastic). Good cycle life and can be used up to 250°F.

MAXIMUM FLOW CURVE

with air consumption in SCFM (gravity mode)

The fileters													
220 ft	67.1	16	33	49	66	82	99	115	Operating Flow Capacity:				
200 ft	61.0	15	30	46	61	76	91	106	anywhere in shaded area.				
180 ft	54.9	14	28	42	56	69	83	97	Air consumption: pick closest				
160 ft	48.8	13	25	38	50	63	76	88	cell to your flow & pressure				
140 ft	42.7	11	23	34	45	56	68	79	90	102	113	124	136
120 ft	36.6	10	20	30	40	50	60	70	80	90	100	110	120
100 ft	30.5	S	17	26	35	43	52	61	70	78	87	96	104
80 ft	24.4	7	15	22	30	37	44	52	\59	67	74	81	89
60 ft	18.3	6	12	18	24	31	37	43	49	55	61	67	73
40 ft	12.2	5	10	14	19	24	29	34	38	43	48	53	58
20 ft	6.1	4	. 7	11	14	18	21	25	28	32	35	39	42
10 ft	3.0	3	6	9	11	14	17	20	23	26	29	31	34
GPM		15	30	45	60	75	90	105	120	135	150	165	180
lpm		57	114	170	227	284	341	397	454	511	568	625	681

SP310F6 Panel

Example 1 (gravity fill): 90 gpm @ 20 ft TDH requires 21 scfm

Example 2 (flow induced): 90 gpm @ 20 ft. Since 90 gpm @ 20 ft uses 21 scfm, then add 0.22 scfm per gpm to that air consumption; in this case 90 x 0.22 scfm or 19.8 scfm. The total consumption is 21 + 19.8 = 40.8 scfm.

^{*}Note for flow inducement: add 0.22 x gpm to the air consumption. (F6)